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Abstract

In this paper, I study the effect of changes in the trend inflation rate on the relationship

between two firm’s decisions: expectation formation and price setting. I develop a new

framework in which firms face both menu cost and information friction, and find that

there is a strong interaction between the firm’s expectation formation and price setting.

This interaction endogenously generates heterogeneity in the frequency and size of the

price setting, depending on firm uncertainty. I also show that the level of the trend

inflation rate is an important factor for the firm’s behavior and distribution. Finally,

I compute the macroeconomic implication of this interaction. I show numerically that

the information frictions amplify the real effects of nominal shocks, while positive

inflation rate weakens this amplification mechanism.
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1 Introduction

Firms’ expectation formation and pricing behavior are important factors in understanding

the effects of monetary policy. Especially, after the Great Recession, the policy rate hit

its Zero Lower Bound and policy makers have tried to implement policies aimed at raising

the inflation expectations to lower the real interest rates and stimulate economy. However,

recent growing literature using firm’s survey data finds that the effect of these policies on

the firm’s belief is limited and uneven across firms: many firms are uninformed about their

economic environment and there is a large heterogeneity in firm uncertainty. Furthermore,

the other strand of empirical literature shows that there is also a heterogeneity in the firm’s

price setting and its distribution is influenced by the level of trend inflation rate.

Given these empirical findings, many research questions arise naturally: how are firms’

expectation formation and price setting decisions related? What is the macroeconomic im-

plication of the link between these decisions? How changes in the level of trend inflation

affect the firm’s behavior?

This paper answers these questions by constructing a new theoretical framework in which

firms face both menu costs to change their price and costly information about their idiosyn-

cratic productivity. Using this framework, I derive the firm’s optimal decisions on infor-

mation acquisition and price setting, and examine the aggregate implication with different

values of the equilibrium inflation rate.

In my model, firms cannot observe their idiosyncratic productivity directly, and instead,

estimate its value by obtaining information from noisy signals. I call the conditional variance

of the estimates as firm uncertainty. Based on the estimated productivity, firms solve their

optimization problem. I assume that firms decide how much attention to pay the signal

subject to the information cost, which depends on the amount of information included in

the signal. This assumption makes firms rationally inattentive to the signal in a sense that

sometimes they optimally ignore new signals in updating the estimates.

The first key finding is that there is a close interrelationship between the decision to

obtain information and the decision to adjust prices. Both decisions depend on two state

variables: the estimated price position and its uncertainty. First, the distance between the

own price and the estimated optimal price influences the firm’s decisions. When the firm

thinks that its own price is close to the desired level, it has no incentive to pay the menu

cost to change the price, as with the standard menu cost model, but also does not pay much

attention to the signal because of the information cost. On the other hand, if the firm’s price

is far from the estimated optimal level, the firm tends to acquire costly information to update

its estimation and prepares for a price adjustment. Second, the level of uncertainty in the
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firm’s estimates also affects the firm’s decisions. I numerically show that the more uncertain

a firm is, the more willing it is to pay information costs to make an accurate estimate,

and the wider the area of inaction in the pricing policy. Since the price adjustment revises

the estimated price position and the information acquisition reduces firm uncertainty, these

decisions are linked to each other through changes in state variables. Consequently, with ex

ante identical firms, information acquisition choice endogenously generates a heterogeneity

in the frequency and size of price changes among firms. This theoretical prediction is new

in the literature.

Secondary, I find that each firm’s information choice amplifies the real effects of monetary

shock. Amplification arises from the following two mechanisms. First, the firm’s information

choice endogenously generates the leptokurtic distribution of the estimated price gap, which

weakens the selection effect observed in the standard menu cost model. Second, uncertainty

creates a dispersion in the time it takes to change prices across firms. The firm with low

uncertainty updates its estimate very slowly and it takes a long time to change the price.

Thus, when the fraction of firms with low uncertainty is large, the real effect of monetary

shock becomes persistent. These amplification mechanisms are novel findings of my paper.

Finally, I show that the firm’s optimal decisions and their aggregate implications are

influenced by the level of trend inflation rate. For example, a positive trend inflation rate

has an asymmetric impact on the firm’s information acquisition. When inflation is positive,

firms can expect the optimal price level to rise in the future, and thus the intensity of

attention to idiosyncratic shocks will be lower when raising prices and higher when lowering

prices. As a result of the change in the optimal decisions, the level of trend inflation rate

also affects the shape of the stationary distribution of the estimated price gap and firm

uncertainty. I numerically show that the kurtosis of the price gap distribution depends on

the level of inflation rate. With a positive inflation rate, the distribution of the estimated

price gap has a fat tail, which strengthens the selection effect. Consequently, the real effect

of monetary shock becomes small and short-lived as the inflation rate rises.

This paper also contributes to the literature methodologically. In this paper, I develop a

new framework which combines the menu cost and the rational inattentive assumption. To

solve not only the stationary equilibrium but also the transition dynamics of this complicated

model, I rewrite the firm’s problem as a combined stochastic and impulse control problem.

Then, the value function of this problem is given by the solution to the so-called Hamilton-

Jacobi-Bellman quasi-variational inequality (HJBQVI). I apply a novel numerical scheme

to solve this HJBQVI. To the best of my knowledge, this paper is the first research in the

theoretical literature that uses the HJBQVI and numerically derives the transition dynamics

of the complicated price setting model without any simplified assumptions.
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2 Literature Review

There is a large literature that studies the characteristics of the firm’s expectations and

its implications for the firm’s decision making and macroeconomic outcomes using survey

data. The common findings in the literature are that firms are on average unaware of their

environments and there is a large disagreement in their expectations. Such discrepancies

in expectations can be explained not only by the observable characteristics of firms, such

as firm size, but also by the difference in how informed on the variables. Moreover, this

difference among firms is caused by their willingness to acquire information. These findings

support the rational inattention model.

For example, Kumar et al. (2015) and Coibion et al. (2018) use New Zealand’s survey

data and find that there is a large heterogeneity in the firm’s expectations and when given

random information, firms with higher ex ante uncertainty are more willing to revise their

forecasts than firms with lower ex ante uncertainty. These findings are consistent with the

firm’s learning technology of my model. In Japan, Kaihatsu et al. (2016) find a heterogeneous

reaction of the firm’s inflation expectations to monetary policy shocks, which also support

the rational inattentive assumption. The relationship between the firm’s expectations and

its decision making is also found in the empirical papers. Coibion et al. (2020) empirically

show the causal effect of information expectations on firms’ economic decisions using the

survey data of Bank of Italy. Bachmann et al. (2019) show that firm uncertainty affects the

frequency and size of the firm’s price setting using the Germany survey data.

There is also another strand of literature that studies the firm’s price setting behavior

using micro firm-level data since the seminal paper of Bils and Klenow (2004). Many papers

in the literature support the menu cost model to explain the firm’s price setting behavior,

especially in the low inflation rate environment (e.g. Nakamura and Steinsson 2008, Gagnon

2009, Alvarez et al. 2019, Higo et al. 2007, Sudo et al. 2014, Watanabe and Watanabe 2018).

In those empirical papers, Watanabe and Watanabe (2018) study the relationship between

the level of inflation rate and the firm’s price setting in Japan. They find that a decline in

the inflation rate increases the share of items whose price remains unchanged, which implies

the price rigidity increases endogenously due to the level of trend inflation rate.

Compared to the empirical findings, there is a relatively small body of literature that

theoretically explains the connection between the firm’s expectation formation and price

setting behavior1. Here, I briefly review the related papers which combine the menu cost

1The standard menu cost model without any information friction is studied in, for instance, Golosov and
Lucas (2007), Midrigan (2011) or Alvarez and Lippi (2014). For the basic parts of the price setting problem,
my paper follows these references.

3



and information friction to study its implications2.

Alvarez et al. (2011) and Alvarez et al. (2018) construct a model in which the firm has

to pay a fixed cost for both observing the true optimal price and adjusting the price. They

assume that firms can perfectly observe their state once they pay the observation cost. As a

result, it is optimal for firms to adjust prices at most once and immediately after observing the

true value and stay until the next observation. Alvarez et al. (2018) extend this framework

and calculate the impulse response of the aggregate output to monetary shock. They find

that these two frictions generate large real effects.

This paper differs from their research in the following points. In Alvarez et al. (2011),

firms only choose the date of observation and adjust prices only when they perfectly observe

the state. In contrast, I assume that firms frequently pay attention to the signals and the

intensity of the attention is also chosen by firms and depending on their state. Furthermore,

firms always change prices with uncertain estimates. As a result, my framework endogenously

generates the interaction between two decisions.

Baley and Blanco (2019) is one of the papers that is most relevant to my research.

They construct the menu cost model with imperfect information. By combining information

friction and fat-tailed shock in the state process, their model generate some similar results

such as cross-sectional variation in price setting decisions to my model. Notice, however, that

they assume that firm uncertainty is given by an exogenous process. This paper contributes

to their study by endogenizing the firm’s information choice.

This paper is also closely related to Yang (2020), which develop a theoretical model of

multiproduct firms who face both menu cost and rationally inattentive restrictions. He finds

the similar theoretical prediction in firms’ optimal decisions. However, he only considers the

zero inflation case. In contrast, I derive the effect of trend inflation on the firm’s behavior

and its macroeconomic implications3.

The rest of this paper is organized as follows. Section 3 outlines the theoretical model.

Section 4 provides the properties of the stationary equilibrium and novel theoretical predic-

tions. In Section 5, I exercise comparative statics to understand the interaction of the firm’s

information choice and price setting. Section 6 analyzes the macroeconomic consequences of

the firm’s decision and the impact of the trend inflation rate, and Section 7 concludes.

2In addition to the literature I introduce here, there are other related papers such as Bonomo et al.
(2021), Gorodnichenko (2008), Mackowiak and Wiederholt (2009) which analyze the interaction between
menu costs and information friction.

3Alexandrov et al. (2020) examines the effect of trend inflation in the menu cost model without infor-
mation friction. In this paper, I investigate the effect of trend inflation in a more comprehensive framework.
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3 Model

I develop a general equilibrium model in which firms face the fixed price adjustment cost

and imperfect information about their idiosyncratic productivity. The model is based on

Golosov and Lucas (2007) with an additional assumption on firms’ belief formation.

Time is continuous. The economy is populated by a representative household, a contin-

uum of monopolistically competitive firms indexed by i ∈ [0, 1], and the monetary authority

who controls the money supply.

3.1 Representative Household

The preference of a representative household is defined over aggregate consumption goods

c(t), labor supply l(t) and real money holdings M(t)/P (t), where P (t) is the aggregate price

level: ∫ ∞

0

e−ρt

(
c(t)1−γ

1− γ
− αl(t) + log

M(t)

P (t)

)
dt (1)

where ρ is the discount rate, γ is the relative risk averse, and α is the disutility of labor. The

household chooses the consumption goods, labor supply, and money holdings to maximize

its utility subject to the following budget constraints:

M(0) +

∫ ∞

0

Q(t)
{
Π̃(t) +W (t)l(t)− r(t)M(t)− P (t)c(t)

}
dt = 0

where r(t) is the nominal interest rate, and thus r(t)M(t) represents the opportunity cost of

holding cash, Q(t) := exp
(
−
∫ t

0
r(s)ds

)
is the time zero price of a dollar delivered at time

t, W (t) is the nominal wage, and Π̃(t) are the firms’ profits. Consumption c(t) is composed

of a continuum of differentiated goods as

c(t) =

[∫
[Ai(t)Ci(t)]

ε−1
ε di

] ε
ε−1

(2)

where ε is the elasticity of substitution, Ci(t) is consumption of a good produced by firm

i, and Ai(t) is its idiosyncratic quality4 which is assumed to follow a Geometric Brownian

motion with zero drift term and variance σ2 with increments that are independent among

firms. Let Bi(t) be a standard Brownian motion, logarithmic form of firm i’s quality ai(t) :=

4The quality of good Ai(t) affects both the marginal cost of firm i and the household’s preferences for
the good. This assumption about the idiosyncratic shock has been introduced by several papers such as
Woodford (2009), Midrigan (2011), Alvarez and Lippi (2014) and Alvarez et al. (2018). It allows us to
reduce the dimensionality of the state space.
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logAi(t) evolves as:

dai(t) = σdBi(t)

I focus on an equilibrium at which the money supply grows at a constant rate µ, then

from the household’s first-order condition with respect to money holdings , I obtain

e−ρt

M(t)
= λQ(t)r(t)

where λ is the Lagrange multiplier for the budget constraints. Taking logs and differentiating

with respect to time, this equation is written as

˙r(t) = r(t)(r(t)− ρ− µ)

This ordinary differential equation has two steady states; r = 0 or r = ρ + µ > 0. Since

the latter steady state ρ + µ is unstable, there exists an equilibrium in which the nominal

interest rate is constant at the level:

r(t) = ρ+ µ for all t ≥ 0 (3)

Q(t) := exp

(
−
∫ t

0

r(s)ds

)
= e−(ρ+µ)t (4)

From the first-order condition with respect to labor supply, the nominal wage W (t) is pro-

portional to the money supply M(t) and thus, its growth rate is µ for all time t ≥ 0.

Moreover, from the first-order conditions with respect to l(t), c(t) and Ci(t), I obtain the

demand function for firm i’s good Ci(t):

Ci(t) = Ai(t)
ε−1

(
Pi(t)

P (t)

)−ε

c(t) (5)

3.2 Monopolistic Firms

There is a continuum of firms producing differentiated goods, indexed by i ∈ [0, 1]. Each

firm produces goods Ci(t) using labor li(t) based on the linear technology: Ci(t) = li(t)/Ai(t)

and sets price Pi(t). I assume that if the firm i adjusts its nominal price at time t, it has

to pay the menu cost κW (t), where the parameter κ is the hours of labor needed to change

price. Given Ci(t) and Pi(t), a firm i’s instantaneous nominal profit Π̂i(t) is written as

Π̂i(t) := Pi(t)Ci(t)−W (t)li(t) = Ci(t)[Pi(t)−W (t)Ai(t)]
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and it maximizes the expected sum of Π̂i(t), discounted at Q(t).

It is convenient to define the firm’s optimal price P ∗
i (t) that maximizes the instantaneous

profit when both price adjustment friction and information friction do not exist:

P ∗
i (t) :=

ε

ε− 1
W (t)Ai(t)

thus, its logarithm p∗i (t) := logP ∗
i (t) evolves as

dp∗i (t) = µdt+ σdBi(t) (6)

and I impose the initial condition p∗i (0) ∼ N (pi,0, zi,0) with an arbitrary value (p0, z0).

3.2.1 Information Structure and Filtering Problem

Firms’ information structure is based on Afrouzi and Yang (2021), and hereafter, I drop

the subscript i for brevity. I assume that firms cannot directly observe their idiosyncratic

productivity a(t) but can acquire information about it from noisy signals. By observing the

signals, firms estimate their productivity a(t), or equivalently, their optimal price P ∗(t) :=
ε

ε−1
W (t)A(t) and make decisions. I define the signal process s(t) as

ds(t) = p∗(t)dt+ σs(t)dV (t) (7)

where V (t) is a standard Brownian motion, independent of p∗(t). The volatility σs(t) repre-

sents the accuracy of the signal. Intuitively, as σs(t) gets lower, a signal has more accurate

information on p∗(t). Note that logarithmic form of the optimal price p∗(t) enters as the

drift of the signal so as to make the filtering problem tractable5.

Firms form their beliefs using the set of all previous signals at any moment. Thus, given

the path of {σs(t), t ≥ 0}, the information set at time t is defined as the σ-algebra generated

by the history of the signals s(t):

I(t) = σ{s(r); r ≤ t} (8)

Given this information set, firms form their beliefs about p∗(t). Let p̂(t) = E[p∗(t)|I(t)] be
the best estimate of the optimal price and let z(t) = E[(p∗(t) − p̂(t))2|I(t)] be its variance.

Notice that, from now on, I refer to z(t) as the firm level uncertainty, following Baley and

Blanco (2019). Proposition 1 establishes the law of motion for optimal price estimates and

5I consider that the firm receives signals about its optimal price, rather than that about its productivity,
but the same results can be derived even if I define the signal process s(t) as ds(t) = a(t)dt+ σs(t)dV (t).
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uncertainty.

Proposition 1 Given a sequence of accuracy of signals {σs(t), t ≥ 0} and the information

set defined as (8), the firm’s belief about p∗(t) conditional on I(t) is Gaussian p∗(t)|I(t) ∼
N (p̂(t), z(t)), where (p̂(t), z(t)) evolve as follows:

dp̂(t) = µdt+
z(t)

σs(t)
dB̂, p̂(0) = p0 (9)

dz(t) =

(
σ2 − z(t)2

σs(t)2

)
dt, z(0) = σ0 (10)

where B̂(t) is given by dB̂(t) = 1
σs(t)

(ds(t) − p̂(t)dt) and it is a standard Brownian motion

under the information set.

Proof. See, for example, Theorem 6.2.8 of Øksendal (2013).

Proposition 1 shows that the firm’s estimated optimal price and its variance, or the firm’s

uncertainty, depends on the accuracy of signals σs(t). When the signal is accurate (low σs(t)),

it is optimal for the firm to update its estimate p̂(t) using new information from the signal

and its uncertainty z(t) decreases. On the other hand, when the firm receives noisy signals

(high σs(t)), it puts high weight on the old information from the previous estimates and the

associated uncertainty increases.

3.2.2 Information Choice and Cost Function

I assume that firms decide how attentive to signals by means of choosing the path of signals’

precision {σs(t) ∈ R+ ∪ {∞}, t ≥ 0} subject to the information cost which depends on the

amount of acquired information from signals. Hence, firms become rationally inattentive

due to the existence of the information cost.

Before specifying the information cost function, it is convenient to introduce a variable

η(t) := z(t)/σs(t)
2 that is the Kalman-Bucy gain of the above filtering problem. Then,

because the deterministic Riccati equation (10) with the initial condition indicates that z(t)

is predetermined at time t by the past choices, a choice of σs(t) ≥ 0 is equivalent to a choice

of η(t) := z(t)/σs(t)
2 ≥ 0. With this notation, the evolution of {p̂(t), z(t)} can be written

as:

dp̂(t) = µdt+
√
z(t)η(t)dB̂(t) (11)

dz(t) = (σ2 − z(t)η(t))dt (12)
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The Kalman-Bucy gain η(t) represents the relative weight of new information from the

signals to old information in the estimation process (11),(12). At all times, the firm decides

how much attention it pays to the signals by picking a sequence of {η(t), t ≥ 0}, where a

higher value of η(t) means that the firm decides to obtain and process new information on

its optimal price from the signals. Moreover, the accuracy of signals affects the value of η(t).

When a signal is accurate (low σs(t)), the firm gives importance to the signal (high η(t))

and updates its estimates by processing information from the signal.

Here, I impose an exogenous restriction on firms’ information choice behavior. Specifi-

cally, I restrict the domain of η(t) so that η(t) is at least larger than or equal to a non-zero

lower bound η̄ > 0 at every moment: η(t) ∈ [η̄,∞],∀t ≥ 0. Intuitively, this assumption

means that every firms are paying at least some attention to signals. Without this ex-

ogenous lower bound, there exists a stationary equilibrium in which some firms completely

ignore the signals and they have never changed their estimates and their nominal price. To

eliminate such an unrealistic case, I introduce the exogenous lower bound of η(t).

Turn now to the specification of the costs of processing information. I assume that the

information cost depends on the amount of acquired information about the optimal price

p∗(t) from observing the signal s(t). Following the seminal work by Sims (2003), the amount

of information obtained about one random variable by observing the other random variable

is measured by the (time limit of) mutual information between the two random variables6.

I follow the definition in Boyarchenko (2012).

Definition 1 Let x and y be two random processes on the real line, and denote by µx, µy, µx,y

the probability measures induced on the canonical space (Ω,G) by x, y and (x, y) respectively.

Then, the mutual information between processes x and y over the time interval [0, t] is

It(x, y) := E
[
log

dµt
x,y

d[µt
x × µt

y]
(x, y)

]
where µt is the restriction to Gt and µ

t
x × µt

y is the Cartesian product of the corresponding

measures.

According to definition 1, I assume that the information cost is specified as a convex

function of the time limit of the mutual information between the process of signal s and

that of optimal price p∗. Given the Gaussian structure of my framework, I can express the

mutual information succinctly. The following proposition gives a concrete illustration of it.

6Canonical rational inattention paper such as Sims (2003) imposes the capacity constraint, or a fixed
upper bound on the amount of imformation. On the other hand, this paper assumes that the firm faces a labor
cost when it processes information from the signal. It allows me to generate state-dependent information
acquisition behavior.
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Proposition 2 If two random processes, (p∗, s) evolves as (6), (7) and the following condi-

tions are satisfied:

1. Equation (7) has a strong solution.

2.
∫ t

0
E [p∗(s)2] ds <∞.

Then, the mutual information between s and p∗ is expressed as

It(p
∗, s) =

1

2

∫ t

0

E
[
(p∗(r)− p̂(r))2

σs(r)2

∣∣∣∣ I(t)] dr
Proof. See Theorem 16.3 of Liptser and Shiryaev (2013).

By using the result in Proposition 2, the time limit of mutual information is given by

dIt(p
∗, s)

dt
=

1

2σs(t)2
E
[
(p∗(t)− p̂(t))2|I(t)

]
=

1

2

z(t)

σ2
s(t)

=
1

2
η(t) (13)

Thus, the amount of information encoded in the signal is equal to the Kalman-Bucy gain η(t).

In this paper, I assume that if the firm processes information, it has to pay the information

cost equal to cinfo untis of labor, and cinfo is a quadratic function of η(t)7:

cinfo :=
χ

2
(η(t)− η̄)2 (14)

where χ is a information cost parameter. With this specification, firms do not have to pay

the information cost when they choose the least level of attention η̄. Notice that, since

the cost function is assumed to be quadratic in attention, the firm is never able to observe

the true value of its optimal price. This contrasts with the observation cost model such as

Alvarez et al. (2011), in which once firms pay an observation cost, they can see their true

optimal price level.

3.2.3 Firm’s Optimization Problem

Suppose that the firm makes decisions based on its estimates (p̂(t), z(t)). Let x(t) be the

firm’s perceived price gap between its own nominal price P (t) and estimated optimal price

p̂(t), which is defined as:

x(t) := logP (t)− p̂(t)

7As here, Lei (2019) and Andrei and Hasler (2014) consider quadratic cost functions in the different
context.
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Then, while the firm maintains its price, it evolves according to

dx(t) = −µdt+
√
z(t)η(t)dB̂(t) (15)

With this notation, the firm’s perceived instantaneous profit is written as a function of t

and x:

E
[
Π̂(t)

∣∣∣I(t)] = W (t)f(t, x) := W (t)α−ε

(
ε

ε− 1

)1−ε

c(t, x)1−γεe−εx

[
ex − ε− 1

ε

]
and the aggregate consumption is given by

c(t, x) =

(
ε− 1

αε

) 1
γ
[∫

e(1−ε)xϕt(x)dx

] 1
γ(ε−1)

where ϕt(x) is the marginal density of x at time t.

Given the state variables (x(t), z(t)), the firm’s behavior can be described as the following

combined stochastic and impulse controls. First, the firm’s information acquisition behavior

is represented by a path of attention at every moment {η(t); t ≥ 0}. Second, the firm’s price

adjustment behavior is described by an impulse control, or a sequence of the price adjustment

times 0 ≤ τ1 ≤ τ2 ≤ · · · and corresponding price adjustment sizes ξ1, ξ2, · · · ;∀j, ξj ∈ Ξ ⊆ R
at the time.

Notice that the firm maximizes the expected sum of its profits, discounted at Q(t) and

from the household’s optimization conditions, I can derive Q(t)W (t) = Q(0)W (0)e−ρt.

Hence, given an initial condition p∗0, the state’s law of motion (12),(15), the filteration

{I(t)}t≥0, and arbitrary controls θ := {η(t)}t≥0, {τj, ξj}∞j=1, the firm’s objective function

is described by

J(0, x(0), z(0); θ) := E0

∫ ∞

0

e−ρt[f(t, x)− χ

2
(η(t)− η̄)2]dt− κ

∑
0≤τj≤∞

e−ρτj


Thus, the firm’s optimization problem is finding the value function and the corresponding

optimal stochastic and impulse controls θ∗ such that

V (t, x, z) = sup
θ
J(t, x, z; θ)

To solve this problem, I use an equivalent partial deffienrential equation formulation8 that

8See chapter 9 of Øksendal and Sulem (2019) and Seydel (2009) for details.
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can be solved via numerical methods. Specifically, with some technical conditions, the value

function V (t, x, z) is given by the solution to the following Hamilton-Jacobi-Bellman quasi-

variational inequality (HJBQVI)9:

max

{
Vt − ρV − µVx + σ2Vz + f(t, x) + sup

η≥η̄

{(
1

2
Vxx − Vz

)
zη − χ

2
(η − η̄)2

}
, MV − V

}
= 0

(16)

where Vx is a partial derivative of V with respect to x, and M is the intervention operator

that returns the optimal value resulting from an intervention. Let Γ be the function that

determines the size and direction of intervention, then the definition of M is given by

MV (t, x, z) = sup
ξ

{V (t,Γ(t, x, ξ), z)− κ ; ξ ∈ Ξ} (17)

Notice that the second term of the left hand side represents the cost or profit of making an

intervention, and in this context, that is corresponding to the menu cost.

The firm’s optimal behavior is characterized by an inaction region D on which the firm

leaves its price unchanged, optimal return point x̂(t, z) which is the price gap the firm chooses

in the price adjustment, and the intensity of attention to information η(t, x, z). Let x(z) and

x̄(z) be the lower and upper bound of the inaction region at time t so that the inaction

region is written as the set Dt = {(x, z) : x ∈ [x(z), x̄(z)]}. It is worth noting that, because

the firm’s state space is two-dimensional, its policy functions {D(x, z), x̂(z), η(x, z)} are also

two-dimensional. It implies that the firm’s price adjustment and information acquisition

decisions are influenced by both price gap and uncertainty. Thus, it can be seen that the

two behaviors —price adjustment and information acquisition—are strongly interconnected

through the state variables and determined by each other.

Lastly, the distribution of state variables at time t; ϕt(x, z) is determined by the Fokker-

Planck equation with the effect of price adjustment. Without price adjustment, the Fokker-

Planck equation is written as

∂ϕ

∂t
= (µ+ zηx)ϕx + (zη − σ2)ϕz +

zη

2
ϕxx +

(
η + zηz +

zηxx
2

)
ϕ (18)

This equation represents the time evolution of the joint density function within the inaction

region. In addition, the density at the threshold of the inaction region jumps to the optimal

return point due to the price adjustment. In this paper, I numerically implement this proce-

9Here, I implicitly consider the discounted HJBQVI that is given by multiplying by eρt and abuse the
notation V
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dure by using the intervention matrix which is the natural discretization of the intervention

operator M defined in (17).

4 Stationary Equilibrium

In this section, I analyze the equilibrium properties of my framework. I focus on a stationary

equilibrium at which the growth rate of money supply is constant at µ. Then, the stationary

equilibrium is defined as follows.

Definition 2 Given the exogenous stochastic processes of idiosyncratic productivity Bi(t),

and idiosyncratic observation noise Vi(t), a stationary equilibrium is a set of stochastic pro-

cesses that consists of an allocation of the representative household, {c(t), l(t),M(t)}t≥0,

a value function V and a set of policy functions {x(z), x̂(z), x̄(z), η(x, z)} for every firm

i ∈ [0, 1], a set of prices {P (t),W (t), r(t), Q(t)}, and a stationary distribution over firm

states ϕ(x, z) such that

1. the representative household maximize her utility function,

2. the value function V solves the HJBQVI (16) with Vt = 0 and {x(z), x̂(z), x̄(z), η(x, z)}
are associated policy functions,

3. markets clear at each date, and

4. the stationary distribution is consistent with actions.

Notice that the money growth rate µ pins down the equilibrium inflation rate and affects

the firms’ behavior.

4.1 Parameter Calibration

Before providing numerical analyses, I set the parameter values. For many of them, I follow

Golosov and Lucas (2007). The discount rate is 0.04 to match an annual risk-free rate of 4

percent. The value of the substitution of elasticity ε = 7 implies that the firm’s markup is

about 16 percent. The disutility of labor α = 6 implies that 37 percent of unit of time is

allocated to work.

The remaining parameters are the information cost χ and the exogenous lower bound of

attention η̄. I assume that χ = 6 so that the average sum of Kalman-Bucy gain matches the

estimate of 0.50 in Coibion and Gorodnichenko (2015). Finally, the exogenous lower bound

is set to σ2/2 so that the most inattentive firm acquire only 1 percent of estimated Kalman

13



parameter Description Value Source
ρ Discount rate 0.04 Golosov and Lucas (2007)
α Disutility of labor 6 Golosov and Lucas (2007)
γ Relative risk aversion 2 Golosov and Lucas (2007)
ε Elasticity of substitution between goods 7 Golosov and Lucas (2007)

σ Standard deviation of idiosyncratic shocks (0.011)
1
2 Golosov and Lucas (2007)

κ Menu cost 0.0025 Golosov and Lucas (2007)

Table 1: Parameter Calibration

gain. Of course, these assumptions are very simple and I will estimate these parameter values

to match the micro firm data in the future research. Notice, however, that every theoretical

findings in this chapter hold within the realistic range of values of the two parameter χ and

η̄.

4.2 Numerical Analysis

In this subsection, I describe the numerical results of the stationary equilibria with different

levels of trend inflation rates and provide some qualitative findings and predictions.

4.2.1 Firms’ Decision Rules

Inaction region Firstly, I describe the firm’s price adjustment decision. As I said, it is

characterized by the inaction region and the optimal return point, {x(z), x̂(z), x̄(z)}. One

notable difference from the basic menu cost model is that the price adjustment decision

depends on not only the price gap but uncertainty. Figure 1 shows the equilibrium inaction

region and return points. Panel (a) is the triplet {x(z), x̂(z), x̄(z)} under the zero inflation

rate case and panel (b) is the comparison of the triplet between zero and two percent inflation

rate cases.

In both cases, the uncertainty widens the inaction region, which is due to the so-called

option value effect proposed in, for example, Dixit (1991). As a result, the size of price

change varies across firms according to their uncertainty. This cross-sectional variation in

the price setting is consistent with the finding of Baley and Blanco (2019)10.

Furthermore, I compute the inaction region with different trend inflation rates. Panel

(b) shows that as the trend inflation rate increases, the triplet shifts upward for any value

of uncertainty. Firstly, the optimal return point x̂ becomes positive, while it is near zero

10They generate the cross-sectional variation by combining the information friction and fat-tailed shocks
to idiosyncratic productivity. In this paper, instead of the fat-tailed shock, I assume that firms are able to
change their attention to the signals by paying information costs. Since this decision depends on both x and
z, the uncertainty does not converge to a constant according to the deterministic Riccati equation (12).
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(a) 0% trend inflation (b) comparing 0% and 2% trend inflation

Figure 1: Inaction Region

Notes. In panel (b), blue lines are the equilibrium triplet {x(z), x̂(z), x̄(z)} under the zero inflation
rate and red dotted lines are that under the two percent inflation rate.

under zero inflation rate. This means that when the trend inflation rate is zero, it is optimal

for firms to revise their price to equal the estimated optimal one. However, when the trend

inflation rate is positive, firms choose the positive estimated price gap, that is, they change

the price to some level higher than the estimated optimal value. This is because, if the

trend inflation is positive, firms expect a higher optimal price in the future. As panel (b)

shows, this mechanism weakens as uncertainty increases, because under high uncertainty,

firms receive more volatile signals and the impact of inflation is reduced.

Along with this change in x̂, the inaction region also shifts upward. Notice, however,

that there is a difference in the range of change between the upper and lower bounds of the

inaction region. The reason is that because of the positive inflation rate, the firm has more

opportunities to raise its price, and thus it tries to control the frequency of price increases to

save menu costs. It brings the lower bound down. Hence, the impact of the trend inflation

rate is asymmetric between the upper and lower bounds.

Intensity of attention Next, I describe the firm’s information acquisition decision. The

intensity of attention to the signal and the amount of acquired information from the signal

are both represented by the optimal η(x, z), which is given by the following maximization

problem in the HJBQVI (16):

sup
η≥η̄

(
1

2
Vxx − Vz

)
zη − χ

2
(η − η̄)2
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The coefficient of first term
(
1
2
Vxx − Vz

)
z represents the marginal benefit of paying additional

attention to the signal and the second term is the cost of attention or information acquisition.

The marginal benefit tells us about two channels through which information acquisition

contributes to the firm’s profit. First, Vxx stands for the speed of increase or decrease rate of

the firm’s value in terms of the price gap. Thus, intuitively, if the firm’s value is sensitive to

changes in the price gap (positive and high Vxx), perceiving the more accurate price position

by paying additional attention becomes beneficial. Second, −Vz represents the reduction

rate of loss due to a marginal decrease in uncertainty. It means that acquiring information

increases the firm’s value via mitigating the loss caused by uncertainty. Notice that both

channels are scaled by z. This implies that firms with relatively high uncertainty benefit

more from information acquisition.

(a) η(x, z) with 0% inflation (b) η(x, z) with 2% inflation

(c) Inaction & Inattention Region with 0% inflation (d) Inaction & Inattention Region with 2% inflation

Figure 2: Information Acquisition

Notes. In the lower panels, blue-colored area represents the pair of states (x, z) at which the optimal
information acquisition is equal to the exogenous lower bound: η(x, z) = η̄.

The upper panels of figure 2 illustrate the equilibrium η(x, z) with different levels of trend
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inflation rate and the lower panels plot the area where the firm chooses the lowest value of

η and the price setting triplet {x(z), x̂(z), x̄(z)}. Regardless of the value of inflation, the

firm has no incentive to acquire costly information around its optimal return point x̂ but

as the estimated distance between its own price and the optimal one opens up, the firm is

willing to pay the cost and acquire information. Its acquisition volume is at its maximum

in the vicinity of the threshold of the inaction region {x(z), x̄(z)}. Indeed, Vxx takes small

or negative value around x̂(z) but as x moves away from the optimal point, the value of

Vxx increases. In addition, panel (a) and (b) show that the amount of acquired information

before price adjustment is greater for more uncertain firms11.

Moreover, information acquisition depends on the level of trend inflation12. Panel (b)

shows that, when the trend inflation is positive, firms try to acquire more information in

advance when they lower prices than when they raise them. This is because, if there is no

idiosyncratic shock, the price gap is expected to fall through time due to positive inflation.

Thus, when the firm estimates the positive price gap, it has a strong incentive to acquire

new information about idiosyncratic shocks.

The results of firm’s policy functions show that there is a strong interaction between

information acquisition and price setting behavior. Firms are inattentive while they perceives

their own price to be close to the optimal one, but as it moves away, they try to acquire

information and finally changes their price after acquiring enough accurate information.

Furthermore, This interaction is affected by the level of inflation rate. With a positive

inflation, firms do not try to acquire as much information in advance when raising the price

as when lowering it.

Expected price change time I show that the firm’s behavior depends on the level of

its uncertainty. Specifically, high uncertainty widens the inaction region and increases the

amount of information acquisition. The former delays the price adjustment, but the latter

increases the estimate volatility of x and raises the probability of hitting the boundaries of

the inaction region. Then, which force dominates and whether does uncertainty increase or

decrease the price adjustment frequency? To answer this question, I derive the expected

duration between two price adjustments conditional on the state. Let T (x, z) := E[τ |x, z] be
11The similar results are shown independently in Yang (2020). While the shape of η in my model depends

largely on the convex or quadratic information cost function, he assumes that the cost is linear in Shannon’s
mutual information and generates the similar shape of information acquisition.

12Notice that even if the inflation rate is zero, information acquisition will not be symmetrical. It is mainly
due to asymmetricity of the instantaneous profit function Π̂. Although Π̂ is a concave function of x and it
takes its maximum value at x = 0 as with the second-order approximated profit function Π̃ := −const× x2

which is used in, for example, Alvarez and Lippi (2014), Baley and Blanco (2019), but Π̂ takes a larger value
when x is positive: Π̂(x) > Π̂(−x). Thus, the resulting value function is also asymmetric and the inaction
region is wider in the positive region. As a result, Vxx (and η) takes a larger value around x than x̄.
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the equilibrium expected time for the next price adjustment given the current state. Then,

the function T (x, z) satisfies the following HJBQVI with the same associated policy functions

with the original firm’s problem (16): {x(z), x̂(z), x̄(z)} and η(x, z):

max

{
1− µTx + (σ2 − zη(x, z))Tz +

zη(x, z)

2
Txx , − T

}
= 0

Notice that the intervention operator M is defined as MT = 0 since the time is reset to 0

by the price adjustment.

Figure 3 illustrates the expected time to reach the boundary of the inaction region from

the optimal return point x̂(z) conditional on the uncertainty E[τ |x̂(z), z] with different trend

inflation rates.

Figure 3: Expected time for the next price change

The figure indicates that under the low inflation rate, the effect of heightening the esti-

mate volatility dominates that of widening the inaction region. Intuitively, more uncertain

firms adjust prices based on incorrect estimates of the optimal price. Then, the probability

that the revised price is far from the actual value of optimal price gets higher. It shortens

the expected time for the next price change. This result is the same as Baley and Blanco

(2019), who show that there is a negative relation between uncertainty and expected adjust-

ment time when the menu cost and signal’s volatility σs are small. They assume that the

inflation rate is zero and the firm’s intensity of attention is fixed. I show that this negative

relationship still holds under low inflation rates, even if firms can choose the intensity of
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attention depending on its state.

A novel part of my analysis is comparing the expected price change time for different

trend inflation rates. Firstly, I show that the conditional expected time until the next price

adjustment is shortened according to the inflation rate for any value of z. It is obvious that

a positive inflation rate reduces the time to reach the lower bound of the inaction region

and increases the time to reach the upper bound. Moreover, I have already shown that the

high inflation rate widens the inaction region and lowers η, or the volatility of x around the

lower bound of the inaction region x(z). Thus, the finding suggests that the latter change

amplifies the effect of the positive inflation rate on the expected time to reach the lower

bound, which in turn dominates the effect of widening the inaction region.

Furthermore, I show that when the inflation rate is high, the uncertainty is less likely

to reduce the expected time, or rather slightly increase it. The reason is that the high

inflation rate reduces the amount of η around the lower bound of the inaction region. It

undermines the volatility effect of uncertainty. Intuitively, firms tend to focus on aggregate

variables rather than idiosyncratic shocks when they raise prices, and thus, uncertainty on

idiosyncratic conditions has few effects on their price setting decisions.

4.2.2 Stationary Distribution and Aggregation

Stationary distribution Figure 4 illustrates the marginal stationary distribution of the

firm’s state under the zero inflation rate. Panel (a) shows that the estimated price gap x

has a leptokurtic distribution. It means that many of the firms perceive that their prices are

close to the optimal value in which firms have no incentive to obtain costly information.

(a) Marginal distribution of x (b) Marginal distribution of z

Figure 4: Stationary distribution with zero inflation rate

The kurtosis of the estimated price gap distribution depends on the value of the trend
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inflation rate. Figure 5 compares the marginal distribution of the (estimated) price gap in

both zero and two percent inflation rate cases. Panel (a) shows that with a positive inflation

rate, the density around the return point x̂ is reduced and the density around the threshold

of the inaction region is increased instead. It implies that as the inflation rate raises, the

extensive margin of the price setting, or the fraction of firms who change their price increases.

(a) Imperfect Information (b) Full Information

Figure 5: Comparing marginal distribution of x

Notes. Panel (a) is the stationary marginal distributions of the estimated price gap in the original rational
inattention model. On the other hand, panel (b) plot the stationary distribution of the actual price gap in
the full information menu cost model. In both panels, blue line shows the distribution under zero inflation
rate and red dotted line shows that under two percent inflation rate.

These differences in the price gap distribution caused by the value of trend inflation

rate are not observed in the full information menu cost model such as Golosov and Lucas

(2007). I replicate the standard menu cost model of Golosov and Lucas (2007) and plot the

stationary distribution of the actual price gap with different inflation rates as shown in panel

(b). The figure shows that, as the trend inflation rate increases, the inaction region and the

optimal return point slightly shift right, but the kurtosis of the distribution is almost the

same. Hence, regardless of the value of trend inflation, the number of firms who change their

price at each date does not change much.

My theoretical prediction about the relation between the extensive margin of price setting

and the value of trend inflation rate is empirically plausible in the sense that it is consistent

with recent empirical findings documented by Watanabe and Watanabe (2018). They find

that, when the inflation rate is close to zero, the share of items whose price stays unchanged

increases as the trend inflation rate approaches zero.

Moreover, my model offers the mechanisms underlying their findings. When the trend

inflation rate is positive, the firm can anticipate that, after some time, its own price is likely
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to be less than the optimal value due to the positive inflation rate. Then, the firm has an

incentive to acquire costly information and prepare the price change. On the other hand,

when the trend inflation rate is zero, there is no aggregate drift that gives some information

about the price gap to the firm. To understand this, consider an extreme example: when

the exogenous lower bound of η is equal to 0, in the vicinity of optimal return point x̂, firms

optimally choose to be completely inattentive. It means that the firm who perceives that its

price is equal or close to the optimal one has no incentive to update its belief. As a result,

the stationary distribution of x becomes a Dirac at the point x̂ = 0. All firms believe their

price to be optimal and there is no price adjustment at all.

Hence, the result of my model predicts that as the trend inflation rate gets closer to zero,

the fraction of inattentive firms increases and it reduces the extensive margin of price change.

Next, I examine the relation between the value of trend inflation rate and the distribution

of firm uncertainty.

Average uncertainty There are two underlying mechanisms through which inflation rate

affects firm uncertainty. First, the level of trend inflation rate influences the intensive margin

of information acquisition, or the amount of information acquired before a price change per

firm. In panel (a) of figure 6, I compare the amount of information acquisition η(x, z) with

(a) Comparing η(x, z) (b) Comparing ϕz conditional on η > η̄

Figure 6: Information acquisition and firm uncertainty

Notes. Panel (a) plots the equilibrium η(x, z) for an arbitrary value of z. Panel (b) illustrates the marginal
density of z conditional on η(x, z) > η̄. It is interpreted as the uncertainty distribution of attentive firms.
In both panels, blue line is for 1%, red-dashed line is for 2%, and yellow-dotted line is for 4% inflation rate.

fixed z for different inflation rates: 1, 2, 4%. The figure shows that a high inflation rate lowers

the optimal amount of information acquired when raising prices and raises the amount when

lowering them. Since the fraction of firms who raise their prices increases with the inflation
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rate, a high inflation rate increases uncertainty of the ”attentive” firm, who pays some costs

to acquire information. Panel (b) of figure 6 plots the density of uncertainty z for those

attentive firms who choose η > η̄. It shows that with higher inflation rates, attentive firms

become more uncertain because firms have less incentive to pay attention to the idiosyncratic

shocks before raising prices. Thus, through this mechanism, a higher inflation rate increases

the average firm uncertainty.

Figure 7: Share of inattentive firms

Notes. I plot the share of firms who choose the amount of information acquisition η equal to the lower bound
η̄ for each stationary equilibrium.

Second, the inflation rate also affects the extensive margin of information acquisition:

an increase in the rate of trend inflation prompts more firms to acquire costly information.

Figure 7 plots the share of ”inattentive” firms, who have no incentive to pay the informa-

tion cost and acquire only the lowest amount of information η̄. Since the process of firm

uncertainty is written as dz = (σ2 − ηz)dt, the uncertainty of inattentive firms continues

to increase up to σ2/η̄13. Thus, ceteris paribus, a large share of inattentive firms raises the

average firm uncertainty. The figure shows that the share of inattentive firms decreases with

the level of inflation rate.

Hence, the trend inflation rate affects the firm uncertainty through these opposing mech-

anisms. Figure 8 plots the relation between the trend inflation rate and the average firm

uncertainty calculated by
∫
zϕzdz. The figure shows that there is a non-monotone relation

between them: the average firm uncertainty increases under near zero and higher inflation

13In my numerical results, η̄z < σ2 holds for any value of z with positive density.
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rates. Furthermore, the driving force for high uncertainty is different in the two environ-

ments. When the inflation rate is high, the first mechanism dominates: each firm raises

its price with less information about idiosyncratic shocks. On the other hand, when the

inflation rate is close to zero, the second mechanism dominates: the fraction of firms who

are willing to pay the cost to acquire information decreases.

Figure 8: Average firm uncertainty

5 Comparative Statics

Now I consider how changes in the information cost parameter χ, the menu cost κ and the

elasticity of substitution ε influence the firm’s policy function and aggregate variables. Here,

I only show the results under zero trend inflation rate, but the qualitative findings are the

same regardless of the value of trend inflation.

5.1 Information Cost

First, I consider the effect of a change in χ on the firms’ information acquisition and price

setting behavior, where χ is a parameter in the information cost function: c(η) := χ
2
(η− η̄)2.

The left panel of figure 9 illustrates the equilibrium information acquisition η with differ-

ent value of χ. It shows that a higher value of χ reduces the optimal value of η for any x. It

means that as the information cost gets expensive, the firm lowers its amount of information

acquisition. Notice that the region where firms choose the lowest value of η does not change

much with the value of χ. This implies that the value of information cost has a strong
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impact on the firm’s decision of how much information to acquire, but it does not have much

influence on the decision of when it starts obtaining costly information.

(a) Information acquisition (b) Inaction region

Figure 9: Firm’s policy functions with different χ

Notes. The left panel shows the equilibrium value of η(x, z) for a fixed z with different χ.

Interestingly, the change in the information cost also affects the firm’s price adjustment

decision. The right panel of figure 9 plots the inaction regions with different value of χ.

The figure shows that the inaction region shrinks towards the optimal return price as χ gets

larger. It implies that with higher information cost, the firm tends to adjust its price more

quickly.

(a) Marginal density of x (b) Marginal density of z

Figure 10: Stationary distribution with different χ

Taken together, these results suggest that around the boundary of the inaction region,

there is a substitution between price adjustment and information acquisition. Since both

decisions incur costs, the firm prefers the cheaper one. In this case, rather than paying high
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information costs to make an accurate estimate, the firm pays the menu cost early to change

its price.

Such a change in the firm’s optimal decision affects the distribution among firms. Figure

10 illustrates the marginal distribution of the perceived price gap x and uncertainty z. The

panel (a) shows that the distribution of price gap has fatter tail as χ increases. Combining

this fact with the shrinkage of the inaction region implies that high information costs make

firms adjust prices more frequently by a smaller amount. Since the amount of acquired

information η(x, z) decreases, firms get more uncertain as χ gets larger, shown in panel (b).

Therefore, the value of information cost parameter χ influences a firm’s decision making,

especially its behavior just before making a price adjustment. With a high χ, the firm gets

inattentive to the signals in a sense that it reduces the amount of information acquired around

the boundary of the inaction region. Furthermore, the firm tends to adjust its price more

quickly instead of paying the information cost. As a result, as χ gets larger, the fraction of

firms who pay the information cost and adjust price increases, but those firms do not acquire

enough information before changing price. Hence, the firms’ average uncertainty increases.

5.2 Menu Cost

Second, I consider the effect of a change in the menu cost κ on firms’ behavior and their

distribution.

As with χ’s experiment, I compute the optimal information acquisition and inaction

region with different value of κ, shown in figure 11. The right panel (b) shows that the

inaction region expands as the menu cost increases, which is the same as the standard full

information menu cost model. With a high menu cost κ, firms are reluctant to adjust the

price even if they perceive that their prices are far from the optimal one. Moreover, the

value of menu cost affects the firm’s information choice. The left panel of figure 11 plots the

optimal η for each value of κ. It shows that around the boundary of the inaction region,

the firm obtains more information about its price position as κ increases. Intuitively, when

menu costs are high, firms want to determine price adjustments based on the most accurate

estimates possible.

Furthermore, the change in κ has an impact on the firms’ stationary distribution. Figure

12 plots the marginal density of the estimated price gap and its uncertainty with different

values of κ. I find that as the menu cost increases, the density around the boundary of the

inaction region is monotonically decreasing. It implies that the fraction of firms who pay

the information cost to obtain new information and then adjust their prices decreases, which

lowers the frequency of price adjustment.
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(a) Information acquisition (b) Inaction region

Figure 11: Firm’s policy functions with different κ

(a) Marginal density of x (b) Marginal density of z

Figure 12: Stationary distribution with different κ

Such an effect of menu cost on the price setting frequency is observed in the standard

full information menu cost model. Notice, however, that there is an amplification mecha-

nism generated by the information acquisition choice. As I showed, as the menu cost gets

higher, firms who consider that their price gaps are close to the boundary of their inaction

regions choose larger η. It means that around the boundary, firms modify their estimates

drastically using new information about the idiosyncratic shocks. Thus, the density around

the boundary of the inaction region decreases, which amplifies the original effect of menu

cost. Since the share of firms who acquire costly information decreases, panel (b) of figure

12 shows that an increase in the menu cost raises the average firm uncertainty .

To sum up, as a price adjustment becomes more costly, each firm change its price more

carefully and less frequently. Although price adjusting firms acquire much information to

conduct accurate estimation, the share of those firms decreases and the entire uncertainty
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increases.

5.3 Elasticity of Substitution

Finally, I study the effect of a change in the market structure. More precisely, I compute

the stationary equilibria with different values of elasticity of substitution ε. Notice that ε

represents the elasticity of substitution among goods or the elasticity of demand for each

firm’s goods.

(a) Information acquisition (b) Inaction region

Figure 13: Firm’s policy functions with different ε

Figure 13 illustrates the firm’s optimal information acquisition and inaction region. Panel

(a) shows that as the demand becomes more elastic (large ε), the firm pays more attention

to the signals and acquires more information. Moreover, panel (b) indicates that with a

higher ε, the inaction region gets narrower. These findings suggest that the firm who faces

an elastic demand is willing to pay the information cost for accurate estimates and adjust

its price by a small amount.

Since firms become attentive to the costly information, their uncertainty decreases as

the elasticity of substitution increases, shown in figure 14. This prediction is consistent

with empirical findings, such as Coibion et al. (2018). They find that firms who face more

competitors are more likely to be better informed than firms with fewer competitors.

In conclusion, these results of comparative statics indicate that the firm’s information

acquisition and price setting are strongly linked and the firm responds to changes in the

cost of a given decision by changing both behaviors. For instance, a change in the cost of

price adjustment affects not only the firm’s price setting behavior but also its information

acquisition. Furthermore, the market structure also determines each firm’s decision and

distribution among firms.
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(a) Marginal density of x (b) Marginal density of z

Figure 14: Stationary distribution with different ε

6 Aggregate Propagation

In this section, I analyze the real effect of monetary shock in two theoretical models: the full

information benchmark and my rationally inattentive firm model. In both cases, I compute

the response of aggregate output and aggregate price to a one-time unexpected permanent

increase in the money supply of size δ%. Suppose that an unexpected shock arrives at time

τ > 0, the sequence of money supply is written as

logM(t) = logM0 + µt 0 ≤ t < τ

logM(t) = logM0 + µt+ δ t ≥ τ

Since the nominal wage is proportional to the money supply, positive δ% shock shifts the

stationary distribution of the perceived price gap in the opposite direction. Here, this mon-

etary shock is assumed to be completely observed by all firms because there is no aggregate

uncertainty. From the optimal condition of the representative household, I can show that

the increase in the money supply is decomposed into the output and price deviations from

the stationary equilibrium:

γ log
c(t)

c̄
+ log

P (t)

P̄ (t)
= δ (∀t ≥ τ)

where P̄ (t) is the aggregate price index in the equilibrium which grows at a rate of µ.

Notice that to compute the impulse response function, many previous literature such as

Alvarez and Lippi (2014) or Baley and Blanco (2019) assume a simplified environment due

to computationally difficulties. In these papers, they assume that a firm’s profit function is
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approximated so that it is independent of the aggregate output, and firms follow the steady

state optimal policy along the transition path. Thus, they ignore the general equilibrium

feedback effect of firms. In the first part of this section, I follow the previous literature

and use this assumption to compute the impulse responses. Then, however, I relax this

assumption and consider the case where firms can continuously react and change their policy

function during the transition period. To derive the transition dynamics without the above

assumptions for simplification, I apply a novel computational method, which is described in

Appendix. This part is a methodological contribution of my paper.

In addition to the information structure, I examine the effect of the trend inflation rate

and the size of monetary shock δ on the impulse response of aggregate variables. I find

that the value of the inflation rate or the shock size does not have much effect when the

information is complete, but it has a significant impact on the transition path of output and

price under incomplete information.

6.1 Perfect Information Benchmark

Figure 15: Impulse response of output in perfect information model

Notes. I plot the output responses to a δ = 1% increase in the money supply in the perfect information
benchmark model with different level of trend inflation rate.

Firstly, I compute the impulse response function for the benchmark model. Figure 15

plots the impulse responses of the output to the monetary shock of size δ = 1 percent with

different levels of trend inflation rate.

The figure shows that in the standard menu cost model, the real effect of monetary shock
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is small and short-lived: the half-life of impulse response is only three months. This result

is due to the large selection effect of price setting behavior, which is well-known mechanism

to reduce money nonneutrality in the menu cost model (Golosov and Lucas 2007).

Moreover, I find that the effect of trend inflation is very limited if the shock size is

small. This is because the stationary distribution of the price gap is not very responsive to

changes in the inflation rate. This finding is in line with Alvarez et al. (2019), they show

that when inflation is zero, changes in the inflation rate do not have a first-order effect on

the distribution of relative prices.

Next, I consider the effect of the shock size on the output responses. Figure 16 illustrates

the output response to the large positive and negative monetary shock (δ = 5 percent). The

figure shows that when the shock size is large, increasing the level of trend inflation slightly

mitigates the output response to a positive shock and amplifies that to a negative shock,

which is consistent with the findings in Alexandrov et al. (2020). Under my calibration,

compared to a zero inflation rate, the four percent inflation rate decreases the cumulative

impulse response to the positive shock by 16% and increases that to the negative shock by

19%.

(a) Large positive shock (b) Large negative shock

Figure 16: Impulse response to the large monetary shocks

The mechanism through which trend inflation creates asymmetric effects on the output

dynamics is the shape of the stationary distribution of price gaps. The positive inflation

rate erodes the firm’s price gap and leads to a higher density at the lower boundary of the

inaction region. It strengthens the selection effect if the shock is positive. Thus, with a

positive inflation rate, a positive shock triggers more firms to adjust prices and the real

effect of a positive monetary shock decreases.

Notice that, while there are some differences, the perfect information benchmark gener-

ates the small and short-lived real effect of the monetary shock in any value of inflation and
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in the size of shocks.

6.2 Effect of Information Acquisition

Next, I analyze the output response to the monetary shock with rationally inattentive firms.

Figure 17 compares the impulse responses of output in the rational inattentive menu cost

model and the perfect information benchmark. The figure shows that the rational inattentive

model generates large and persistent real effects of monetary shock: the impact effect is 1.5

times greater than the benchmark model, and the half-life of the output response is about

14 months, 4.6 times longer than the 3 months of the standard menu cost model.

Figure 17: Impulse response of output to 1% monetary shock

Notes. I plots impulse responses of output to a small (δ = 1 percent) monetary shock under two economies.
In both cases, I assume the trend inflation rate is zero and use the calibrated parameter values.

6.2.1 Amplification mechanism

In this subsection, I examine the underlying two mechanisms which generate the large and

long-lasting real effect in the rational inattention model: the shape of the stationary distribu-

tion and the learning speed of each firm. First, when the inflation rate is zero, the stationary

distribution of the perceived price gap becomes leptokurtic. It reduces the selection effect

because the density of firms who are close to the boundary of the inaction region decreases.

This slows down the rate of adjustment to a shock and makes the real effect larger and more

persistent.
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Second, due to the firm’s information acquisition choice, the expected time for price

adjustment depends on the uncertainty and trend inflation rate. I showed that when the

inflation rate is zero, it takes firms with any uncertainty a longer time to change prices than

when the inflation rate is positive. In addition, when the inflation rate is close to zero, less

uncertain firms learn slowly about their idiosyncratic shocks and they take a longer time to

adjust prices than more uncertain firms. Thus, the real effect of monetary shock depends on

the firm’s learning speed: if the firm takes a long time to reach the boundary of the inaction

region, the output response gets persistent. This mechanism is new in the literature.

To investigate these mechanisms more precisely, I conduct a counterfactual exercise:

compute the impulse response of the output with different values of the lower bound of

attention η̄. This lower bound represents the lowest intensity of attention and affects each

firm’s learning speed and firms’ distribution.

(a) Marginal density of x with different η̄ (b) Expected time for adjustment with different η̄

Figure 18: Effect of η̄

Notes. Panel (a) plots the stationary marginal density of estimated price gaps with different values of η̄.
Panel (b) plots the expected time for the next price change, which is derived by the same calculation in
section 4.2.1.

I consider counterfactually large values of η̄. The left panel of figure 18 plots the sta-

tionary marginal density of estimated price gap with different η̄. It shows that the kurtosis

of the distribution declines with a large η̄, which mitigates the first mechanism because the

density of firms around boundaries of the inaction region increases. Moreover, firms can

receive more information without the information cost, a high η̄ raise each firm’s learning

speed. The right panel of figure 18 shows that a high η̄ shortens the expected time for the

next adjustment. Thus, the second mechanism also weakens.

Figure 19 numerically illustrates the change in the two mechanisms according to the

value of η̄. This figure plots the density of adjusting firms who pay the menu cost to adjust
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(a) One month after a shock (b) One year after a shock

Figure 19: Adjusting firm’s density

Notes. I plots the density of adjusting firms who get out of their inaction region within a small time interval
for each value of z. Panel (a) illustrates the density one month after the shock arrived, and panel (b) does
that one year after. In both figures, blue line represents the original η̄ case and red dotted line is the case of
a counterfactual large η̄.

their prices within a small time interval. The left panel plots the density one month after

the shock and the right panel plots that one year after. In both moments, I find that a high

η̄ increases the total number of adjusting firms, and raises the ratio of uncertain firms who

learn and adjust prices quickly. For instance, one month later, a high η̄ raises the density

of adjusting firms about four times higher, and the average uncertainty more than six times

higher compared to the original calibration.

As a result, the impulse responses of the output to the monetary shock vary according to

the lowest intensity of attention. Figure 20 plots the impulse responses to the one percent

monetary shock with different values of η̄. It shows that a high η̄ generates a relatively small

and short-lived real effect, and gets close to the result in the perfect information case. When

the lowest intensity is eight times larger than the original value, the impact effect is reduced

to 80% of the original result and the half-life is about six months, which is less than half

as short as the original one. These results are intuitive because in general, the weaker the

information friction is, the closer we get to a perfect information outcome.

To sum up, when firms are rationally inattentive to their idiosyncratic shocks, the aggre-

gate output responds to the monetary shock larger and more persistently. This is because

firms endogenously choose their information acquisition, which generates an leptokurtic dis-

tribution of estimated price gaps and cross-sectional variation in time for the price adjust-

ment. When the inflation rate is zero, only a small fraction of firms adjust prices, and

among those firms there is a concentration on those with low uncertainty. Since low uncer-
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Figure 20: Impulse response with different η̄

tainty firms have less incentive to update their beliefs, they adjust prices relatively slowly.

Combining these mechanisms, the real effect of monetary shock gets larger and lasts longer.

Interestingly, these two mechanisms are affected by the lowest intensity of attention,

or equivalently, the amount of information firms can obtain for free. As more information

becomes available without paying information costs, the number of firms who adjust prices

increases, especially those with high uncertainty, who adjust prices quickly. Consequently,

the response of the output to the shock gets weaker. This prediction is a novel part of this

paper.

6.2.2 Effect of trend inflation rate and shock size

(a) small monetary shock (b) large monetary shock

Figure 21: Impulse response of output
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Moving on to consider the effect of the trend inflation rate and the size of shock on the

impulse responses. Figure 21 plots the impulse response of the output with different inflation

rates and the size of shock. The left panel shows that when the shock size is small (δ is one

percent), positive inflation rates weaken the output response significantly. The underlying

mechanism is the same as the case of η̄. As I discussed earlier, a positive inflation rate

increases the density around boundaries of the inaction region and shortens the expected

time of each firm’s price adjustment. Thus, the real effect of monetary shock becomes small

and short-lived.

Notice that the causes of these changes in the stationary distribution and price adjustment

time are different from the case of η̄. Here, the reason is that the firm puts more weight on

the aggregate trend when it estimates the state when the inflation rate is positive. Because

the firm can anticipate that its own price will be smaller than the optimal value due to

the positive inflation rate, the distribution of estimated price gaps has a fatter left tail. In

addition, a positive inflation rate reduces the time to reach the lower bound of the inaction

region, and it shortens the conditional expected time until the next price adjustment.

Furthermore, the right panel of figure 21 shows that when the inflation rate is positive,

a large monetary shock (δ is five percent) has conversely negative real effect. This negative

output response is explained by two steps. First, when the inflation rate is positive, there is

a high density of firms around boundaries of the inaction region, which makes the selection

effect become large: when the shock arrives, lots of firms immediately change their prices.

Second, adjusting firms choose higher prices than the optimal level due to the positive

inflation rate. Thus, when the shock size is sufficiently large, a significant fraction of firms

raise prices above the optimal level, causing demand to fall and the aggregate output to drop

below its steady-state value.

Notice that this result heavily depends on the assumption that firms can perfectly observe

the aggregate variables and thus the size of monetary shock. If I assume that firms also

cannot observe the aggregate variables directly, the positive inflation rate and large shock

might not generate the negative output response.

I also investigate the aggregate price responses. Figure 22 plots the growth rate of the

aggregate price, or the percentage deviation from the equilibrium inflation rate. The left

panel shows that when the shock size is small, the positive trend inflation rate slightly

strengthens the initial response of the aggregate price and hastens the convergence. This

is because the increase in the money supply δ is decomposed into the output and the price

deviation from the steady state at any time and a positive inflation rate has a small and

short-lived real effect.

On the other hand, the right panel shows that when the shock size is sufficiently large and
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(a) small monetary shock (b) large monetary shock

Figure 22: Impulse response of aggregate price

the inflation rate is positive, the monetary shock generates an oscillatory path of aggregate

price. It is caused by a cycle of the density of firms who reach to the boundary of the

inaction region: with a positive inflation, the density reaching the boundary is time varying.

Because it takes time for a large mass of firms to reach the edge, return to the optimal point,

and then go to the edge again, this cycle generates the oscillations of the aggregate price

response. Such a mechanism to generate an oscillation of dynamics is called as echo effect

proposed by Benhabib (e.g. Benhabib and Hobijn 2002).

6.3 Including General Equilibrium Effect

Finally, I investigate the general equilibrium feedback effect and examine the plausibility of

assumptions for simplification when calculating the impulse responses.

I compute the same impulse response of the output to the one-time monetary shock in

both the perfect information benchmark and imperfect information model. Now, however,

I relax the assumption that the firm follows the steady state policy function during the

transition. Instead, here I assume that the firm takes the changes in the aggregate variables

into account and adjusts its optimal policy. That is, I take the general equilibrium feedback

effect fully into consideration.

6.3.1 Perfect information

First, I consider the perfect information menu cost model. Figure 23 compares the output

responses to large positive and negative monetary shocks. It shows that there is little dif-

ference between the two calculations: for instance, with a positive large shock, the feedback

effect increases the impact effect 6% and the cumulative impulse response 5%.
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Intuitively, in the perfect information benchmark, the feedback effect only has a small

impact on the dynamics of aggregate variables because firms can perfectly expect the future

path of the aggregate output and they do not change the price setting decision rules much.

Indeed, my numerical calculations show that the firm’s optimal policy slightly responds to

shocks, but quickly returns to the steady state level.

(a) large positive shock (b) large negative shock

Figure 23: Including GE effect, perfect information model

Notes. Blue line represents the impulse response with including the general equilibrium feedback effect, and
red dotted line is the impulse response calculated based on simplified assumptions. In both cases, the trend
inflation is assumed to be zero.

Thus, the results imply that the general equilibrium effects are negligible for a monetary

shock of realistic magnitude in the standard menu cost model. This finding is in line with

Alvarez and Lippi (2014).

6.3.2 Imperfect information

Next, I consider the imperfect information model. Figure 24 illustrates a comparison of the

output response to large monetary shock under zero and two percent trend inflation rate. In

both cases, there is no significant quantitative difference between the impulse responses with

and without general equilibrium effect, but qualitatively, the firms’ revision of their policy

functions has a positive effect on the output response to a positive monetary shock.

The main mechanism underlying this positive effect is a change in the firm’s information

acquisition choice. After the shock arrives, firms become inattentive to the idiosyncratic

signals in two ways: First, the inattentive region in which the firm does not pay the informa-

tion cost expands. Second, the amount of information acquisition around the boundary of

the inaction region declines. Both changes in information choice reduce the learning speed

of firms in the inaction region and lower the density of price adjusting firms in the initial
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(a) 0% inflation rate (b) 2% inflation rate

Figure 24: Including GE effect, rational inattention model

period. Because more firms keep the lower price, the aggregate output increases compared

to the case without the general equilibrium effect.

Notice that the change in the firm’s decision rule is mainly due to the assumption of

the monetary shock. I assume that the size of the increase in money supply is perfectly

observable for firms with any uncertainty. Thus, firms know that the perceived size of the

change in their price gap is not wrong. As a result, firms give less weight to new information

from signals before adjusting prices.

7 Conclusion

I investigate the relationship between the firm’s price setting and expectation formation, and

study the effect of trend inflation rate on these firm’s decisions by constructing a new theo-

retical framework that combines the state-depending price setting problem and the rational

inattention problem.

Using the new framework, I find that there is a strong interaction between the firm’s price

setting and information choice behavior, and the level of trend inflation strongly affects

the firm’s decision rules and the distribution. Furthermore, I show that the information

friction plays an important role in the price setting behavior. It generates the heterogeneity

in the size and frequency of price adjustments across firms and a leptokurtic distribution

of estimated price gaps. I find that these imperfect information mechanisms amplify the

aggregate output responses to monetary shock and thus, generate a large and long lasting

real effect of monetary shock.

In addition, I numerically investigate the general equilibrium feedback effect on the im-

pulse responses to monetary shock by using a novel computational method. The results
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indicate that the general equilibrium effect changes the initial responses of the aggregate

variables to some extent, but quantitatively, the simplified assumption provides a good ap-

proximation of the impulse responses.

There are several important directions for future research. First, I assume that firms are

uncertain only about their idiosyncratic productivity. In contrast, many empirical papers

suggest the importance of the aggregate uncertainty. Kumar et al. (2015) find that firms

are also uninformed about the aggregate variables, for example, the value of inflation rate

or the central bank’s policy. Aastveit et al. (2017) find that when the economic uncertainty

is high, the effect of monetary policy shock becomes weaker. Thus, further work should

be conducted by incorporating the aggregate uncertainty into the firm’s information choice

behavior, as discussed in Mackowiak and Wiederholt (2009). This extension might have

interesting implications for the effect of monetary policy, such as the welfare effect of the

information targeting, which can provide the new insight into the validity of two percent

inflation rate targeting.

Second, I find some testable micro predictions about the firm’s price setting behavior,

and also show that the aggregate results are sensitive to the value of the parameters in

the firm’s information choice. Thus, empirical studies are required to assess my theoretical

predictions and estimate the parameter value more rigorously using the firm’s price micro

data provided, for instance, in Cavallo and Rigobon (2016). These extensions and research

remain for future work.
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Computational Appendix

In this appendix, I explain the numerical methods for computing the stationary equilibrium

and transition dynamics in the rational inattentive menu cost model. Notice that because

the standard menu cost model without information friction can be also solved by following

the same procedures, I skip the explanation for the perfect information case. Main references

are Azimzadeh (2017), Kaplan et al. (2016) and the numerical appendix of Achdou et al.

(2021).

A. Stationary Equilibrium

Consider the case that the functions f,Ξ,Γ do not depend on time. Then, the firm’s problem

in the stationary equilibrium is given by the following discounted HJBQVI:

max

{
−ρV − µVx + σ2Vz + f(x) + sup

η≥η̄

{(
1

2
Vxx − Vz

)
zη − χ

2
(η − η̄)2

}
, MV − V

}
= 0 on R× R+

(19)

Note that in this case, the value function V is no longer a function of time and state space

but rather a function of state alone. Moreover, as I described in equation (17), the definition

of the (discounted) intervention operator M is given by

MV (x, z) := sup
ξ

{V (Γ(x, ξ), z)− κ ; ξ ∈ Ξ} (20)

To solve this HJBQVI, I apply the ”penalty scheme” and use the policy iteration method14.

A.0. Procedures

The computational procedures for the stationary equilibrium are as follows.

1. Guess the value of equilibrium aggregate consumption c̄ which determines the coeffi-

cient of the instantaneous profit function f .

2. Solve the HJBQVI (19) given the guess and obtain the optimal policy {x(z), x̂(z), x̄(z)}
and η(x, z).

3. Derive the stationary density of state (x, z) from the Fokker Planck equation with the

firm’s policy function.

14For details, see chapter 2.3 of Azimzadeh (2017).
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4. Calculate the aggregate consumption using the derived density function.

5. Check whether it is sufficiently close to the old one. If not, update the guess and

iterate.

I mainly explain the solution methods of the HJBQVI and derivation of the stationary

density function.

A.1. Preliminary

Before solving the HJBQVI, I have to approximate the function V (x, z) at M := Nx × Nz

discrete points in the space dimension, xi, i = 1, 2, · · · , Nx and zj, j = 1, 2, · · · , Nz. I denote

by ∆x and ∆z the distance between grid points 15, and use the short-hand notation Vij :=

V (xi, zj).

We use D and D2 to denote the discretization of the first and second partial deriva-

tives so that Vx(xi, zj) ≈ (DxV )ij, Vxx(xi, zj) ≈ (D2
xV )ij. Precisely, for any matrix ψ :=

{ψij}i=1,··· ,Nx,j=1,··· ,Nz , I define

(Dxψ)ij :=
ψi,j − ψi−1,j

∆x

(Dzψ)
+
ij :=

ψi,j+1 − ψi,j

∆z

(Dzψ)
−
ij :=

ψi,j − ψi,j−1

∆z

(D2
xψ)ij :=

ψi+1,j − 2ψi,j + ψi−1,j

(∆x)2

where I use the backward difference approximation of the first derivative with respect to x,16

and let (Dzψ)
+ and (Dzψ)

+ denote the forward and backward difference approximation of

the first derivative with respect to z, respectively.

15Here, I assume a uniformly spaced grid point. Of course, I can easily apply the nonuniform grid points,
and indeed I do when I calculate the transition dynamics in the perfect information benchmark case. To
capture the path of firms’ optimal triplet more correctly, after deriving the triplet with the uniform grids, I
construct the nonuniform grid space in which there are finer grids around the triplet and recalculate using
this nonuniform grid space.

16This is because I consider the non-negative inflation rate environments (µ ≥ 0), and then, the condition
of convergence leads to this assumption.
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A.2 Intervention Operator

The intervention operator is defined as

MV (x, z) := sup
ξ∈Ξ

{V (Γ(x, ξ), z)− κ ; ξ ∈ Ξ}

Then, we discretized the intervention operator according to

(MV )ij = sup
ξij∈Ξh(xi,zj)

{interp (V,Γ(xi, ζij), zj)− κ} (21)

where we use interp(V, x, z) to denote the value of the numerical solution at (x, z) as ap-

proximated by a standard monotone linear interpolant.

To deal with the infinite control space Ξ = R, we take Ξh(x, z) = {x1 − x, · · · , xNx − x}
so that

(MV )ij = max
ξij∈Ξh(xi,zj)

{interp (V, xi + ξij, zj)− κ}

= max
1≤k≤Nx

{interp(V, xk, zj)− κ}

= max
1≤k≤Nx

{Vk,j − κ}

A.3 Penalty Scheme

The penalty scheme is one of the numerical schemes for HJBQVIs. The basic idea of the

penalty scheme is to discretize the ”penalized” form of (19). Bensoussan and Lions (1984)

proved that, subject to some technical conditions, the solution to the original HJBQVI is

the pointwise limit of the solution to the ”penalized” form of it. We solve the discretized

version of the ”penalized” form using the auxiliary control dij ∈ {0, 1} as follows:

sup
dij

{
−γij(V, η) + fi +

1

ϵ
dij [(MV )ij − Vij]

}
= 0 (22)

for i = 1, · · · , Nx and j = 1, · · · , Nz. where ϵ > 0 is a penalty term and,

γij(V, η) := ρVij + µ(DxV )ij −
zjηij
2

(D2
xV )ij − (σ2 − zjηij)(DzV )ij

ηij := max

{
zj
χ

(
1

2
(D2

xV )ij − (DzV )+ij

)
, 0

}
+ η̄
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Here, I use the Upwind scheme for the approximation of the first derivative w.r.t. z:

(DzV )ij =

(DzV )+ij, if σ2 − zjηij ≥ 0

(DzV )−ij, o.w.

and thus,

−(σ2 − zjηij)(DzV )ij = −|σ2 − zjηij|1l{σ2−zjηij≥0}(DzV )+ij + |σ2 − zjηij|1l{σ2−zjηij<0}(DzV )−ij

where 1l is an indicator function. The solution to this problem is obtained by applying

so-called policy iteration algorithm.

A.4 Policy Iteration

To apply the policy iteration method, I rewrite the above HJBQVI as a nonlinear matrix

equation of the form:

find v ∈ RM s.t. sup
P∈P

{−A(P )v + y(P )} = 0 (23)

To write the penalty scheme in the form of (23), define the domain of control variables as

Pij := Ξh(xi, zi)× {0, 1} × [η̄,∞) (24)

and let Pij := (ξij, dij, ηij) ∈ Pij be a set of control for an arbitrary grid point (xi, zj). Thus,

in my context, P = {ξij, dij, ηij}ij: (Nx×Nz) matrix. Then, define the matrix-valued function

A and vector-valued function y such that for an arbitrary vector v which is a vectorization

of (Nx ×Nz) matrix V : v = (V1,1, · · · , , VNx,1, V1,2, · · · , VNx,2, · · · , VNx,Nz)
′ as follows:

[A(P )v]ij = γij(V, η) +
1

ϵ
dij

[
Vij −max

k
Vkj

]
(25)

[y(P )]ij = fi −
χ

2
(ηij − η̄)2 − κ

ϵ
dij (26)

and reshape y(P ) to a column vector of length M .

Now, using the finite difference method defined in section A.1., γij(V, η) is written as

γij(V, η) = aijVi−1j + bijVij + cijVi+1j + wB
ijVij−1 + wF

ijVij+1
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where

aij = −
(
µ

∆x

+
zjηij
2(∆x)2

)
bij = ρ+

µ

∆x

+
zjηij
(∆x)2

+
|σ2 − zjηij|

∆z

cij = − zjηij
2(∆x)2

wB
ij = −|σ2 − zjηij|

∆z

1l{σ2−zjηij<0}

wF
ij = −|σ2 − zjηij|

∆z

1l{σ2−zjηij≥0}

Note that I impose artificial reflecting barriers as follows:

b1j = b1j + a1j, bNxj = bNxj + cNxj,

bi1 = bi1 + wB
i1, biNz = biNz + wF

iNz
,

a1j = 0, cNxj = 0, wB
i1 = 0, wF

iNz
= 0 (∀i ∀j)

Then, the ”intensity matrix” A is defined as

γ(V, η) = Av

where v is a vector of lengthM = Nx×Nz with entries (V1,1, · · · , , VNx,1, V1,2, · · · , VNx,2, · · · , VNx,Nz)
′

and A is a M ×M matrix which diagonal elements are (aij, bij, cij, w
B
ij , w

F
ij):

A =



b11 c11 0 · · · 0 wF
11 0 · · · · · · · · · · · · · · · · · · 0

a21 b21 c21 0
.
.
. 0 wF
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Then, I apply Howard’s policy iteration procedure to solve the problem (23):

1. Pick an arbitrary initial guess v0 ∈ RM

2. for k = 1, 2, · · · , iterate the following two steps until vk converges:

k-1 Pick P k such that

−A(P k)vk−1 + y(P k) = sup
P∈P

{−A(P )vk−1 + y(P )}

k-2 Solve the linear system A(P k)vk = y(P k) to obtain vk

Azimzadeh (2017) showed that this policy iteration applied to the penalty scheme always

converges to the unique solution to (23) under the above construction of A. Hence, by

iterating this procedure, I obtain the firm’s value function V (x, z) and the associated policy

functions {x(z), x̂(z), x̄(z), η(x, z)}17.

A.5 Fokker-Planck equation

After deriving the optimal policy functions from the HJBQVI, I calculate the stationary

density function of the state ϕ(x, z) by solving the Fokker-Planck (FP) equation and the

intervention operator.

Without price adjustment, the FP equation is

∂ϕ

∂t
= 0 = (µ+ zηx)ϕx + (zη − σ2)ϕz +

zη

2
ϕxx +

(
η + zηz +

zηxx
2

)
ϕ (27)

or its discrete approximation is

0 = Ãϕ (28)

where ϕ is the vector of length M which discretizes the density function and Ã is a M ×M

matrix that represents the discretized approximation of the FP equation using the finite

difference as with the HJBQVI. Here, I apply the upwind method for the first derivative

w.r.t. both x and z as follows:

(µ+ zηx)ϕx ≈

(µ+ zηx)(Dxϕ)
+, if µ+ zηx ≥ 0

(µ+ zηx)(Dxϕ)
−, if µ+ zηx < 0

17The inaction region is given by the set of grid points (xi, zj) at which dij = 0. Thus, the thresholds
of the inaction region {x(z), x̄(z)} are approximated by the minimum and maximum values of i such that
dij = 0 for each j = 1, · · · , Nz.
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and

(zη − σ2)ϕz ≈

(zη − σ2)(Dzϕ)
+, if zη − σ2 ≥ 0

(zη − σ2)(Dzϕ)
−, if zη − σ2 < 0

Thus, discritized FP equation for any ϕij is given by

0 = aijϕi−1j + bijϕij + cijϕi+1j + wB
ijϕij−1 + wF

ijϕij+1

where

aij =
|µ+ zjηx|

∆x

1l{µ+zηx<0} +
zjηij
2(∆x)2

bij = η + zηz +
zηxx
2

− |µ+ zjηx|
∆x

− zjηij
(∆x)2

− |zjηij − σ2|
∆z

cij =
|µ+ zjηx|

∆x

1l{µ+zηx≥0} +
zjηij
2(∆x)2

wB
ij =

|zjηij − σ2|
∆z

1l{zjηij−σ2<0}

wF
ij =

|zjηij − σ2|
∆z

1l{zjηij−σ2≥0}

with the same reflecting barrier assumption. Hence, the diagonal elements of Ã are given

by (aij, bij, cij, w
B
ij , w

F
ij).

To introduce adjustment, we now define a binary matrix M called ”intervention matrix”

which is the natural discretization of the intervention operator M. M consists of Nz block

diagonal matrices of size Nx ×Nx: M := diag(M1, · · · ,MNz). For each j = 1, · · · , Nz, Mj

is defined as

Mj = (M)l,k =


1, if l ∈ Ij, and l = k

1, if l ̸∈ Ij, and k
∗
j (l) = k

0, o.w.

(29)

where we let Ij be the set of grid points in the inaction region for the block diagonal grid

points l, k = (1, · · · , Nx) × j, and denote by k∗j (l) the optimal return point with zj that is

reached from point l = (1, · · · , Nx)× j upon adjustment.

To find the stationary distribution for (x, z), I use the ”splitting algorithm” based on

Kaplan et al. (2016). I split the step of finding ϕn+1 given ϕn into two steps:
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1. Given ϕn find ϕn+ 1
2 from

ϕn+ 1
2 = M′ϕn (30)

2. Given ϕn+ 1
2 find ϕn+1 from

ϕn+1 − ϕn+ 1
2

∆t

= M′Ãϕn+1,

⇔
[
I−∆tM

′Ã
]
ϕn+1 = ϕn+ 1

2 (31)

Iterate until ϕn converges to the stationary distribution ϕ∗, where ∆t is an iteration step size

that determines the convergence speed.

A.6 Update the guess of c

Finally, compute the new aggregate consumption c∗ using obtained stationary marginal

distribution of x: ϕ∗(x)

c∗ =

(
ε− 1

αε

) 1
γ
[∫

e(1−ε)xϕ∗(x)dx

] 1
γ(ε−1)

(32)

Then, calculate again the HJBQVI and FP equation given the new consumption c∗ until the

value of the aggregate consumption converges.

B. Transition Dynamics

Next, I explain the computation procedures for the transition dynamics including the general
equilibrium feedback effects. The sequence of the value function along the transition t ∈ [0, T ]
is given by the following discounted HJBQVI:

max

{
Vt − ρV − µVx + σ2Vz + f(t, x) + sup

η≥η̄

{(
1

2
Vxx − Vz

)
zη − χ

2
(η − η̄)2

}
, MV − V

}
= 0 on [0, T )× R× R+

(33)

V (T, ·, ·) = V ∗on R× R+

(34)

Now, the functions f and Γ depend on time and the second equation is the terminal condition

(V ∗ is the stationary equilibrium value function).

The detailed calculation method is the same as the one described in the previous chapter,

and thus I only explain the procedure here.
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B.0 Procedures

The computational procedures for the transition dynamics are as follows.

1. Guess the transition paths of aggregate consumption c(t).

2. Given guessed paths, derive the sequence of value functions {V t}Tt=1 by solving the

HJBQVI backward with the terminal condition: at each time, derive V t given the

value of V t+1.

3. Derive the sequence of density function in each time step by using the Fokker-Planck

equation and the sequence of the policy functions {x(t, z), x̂(t, z), x̄(t, z), η(t, x, z)},
starting from the initial distribution which is the density immediately after the shock

has arrived, but before firms responded to it: derive phit+1 given ϕt.

4. Calculate the path of aggregate consumption c(t) using derived density functions.

5. Check whether these paths are adequately close to the old ones. If not, update the

guess and iterate.

The difference from the calculation of equilibrium is that I guess the path of the aggregate

consumption rather than the steady state value. At each time step, the HJBQVI can be

solved by the same numerical method as the stationary equilibrium case. The sequence of

density functions is derived forward from the initial distribution by applying the splitting

algorithm one at a time.
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