Lack of debt restructuring and lenders' credibility (A theory of nonperforming loans)

Keiichiro Kobayashi¹

Tomoyuki Nakajima² Shuhei Takahashi³

¹Keio University

²University of Tokvo

³Kyoto University

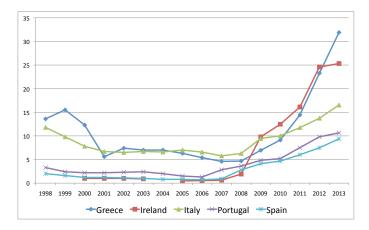
Keio-Waseda Workshop, September 21, 2018

Financial crisis and nonperforming loans

- In the aftermath of a financial crisis, we observe
 - increase in uncertainty
 - persistent stagnation
- This paper:

Accumulation of too much debt or nonperforming loans may cause these distortions

Non performing loans in some European countries



Notes: Fraction of non-performing loans in total gross loans. Source: World Bank.

Kobayashi Nakajima Takahashi

Nonperforming loans

Nonperforming loans

- Loans are classified as nonperforming if payments of interest and/or principals are past-due by 90 days or more (IMF).
 - They remain classified as such until written off or payments of interest and/or principal are received.
- Theoretically,
 - the contractual value of loan, D, is a payoff-relevant state variable when small;
 - when *D* is large, it is no longer a payoff-relevant state variable; in this case we call *D* a nonperforming loan.

Uncertainty

In the aftermath of a financial crisis, we observe an increase in uncertainty

• Monetary Report to Congress (July, 2010)

"participants cited several factors that could restrain the pace of expansion \cdots , including \cdots persistent uncertainty on the part of households and businesses about the strength of the recovery"

- Usual interpretation: an uncertainty shock
 - Changes in σ , where the variables follow $N(\mu, \sigma)$
- Our interpretation: state variable, *D*, is no longer payoff-relevant:
 - can no longer make actions depend on D, whereas they could in normal times;
 - higher volatility, as intertemporal smoothing with D is infeasible (conjecture).

Persistent Stagnation

In the aftermath of a financial crisis, we observe persistent stagnation

- Usual interpretation: secular stagnation hypothesis
 - Persistent changes in financial frictions (Eggertson and Mehrotra 2014)
 - Persistent changes in productivity (Gordon 2012)
- Our interpretation: state variable, *D*, is no longer payoff-relevant:
 - Inefficiency in production may continue persistently.
 - There arises a "debt Laffer curve" (e.g., Krugman, 1989). The amount that the lender receives from the borrower can decrease with the book value of debt.
 - Inefficiency may appear as involuntary unemployment

This paper

Accumulation of nonperforming loans may cause persistent distortions

- Debt accumulates due to negative shocks (e.g., productivity shocks);
- contractual rigidities (exogenous frictions) make debt restructuring infeasible;
- a credibility problem on the lender side arises, as contractual value of debt exceeds a threshold:
 - in normal times, contractual value of debt is a payoff-relevant state variable;
 - when the loan becomes too large, it becomes no longer payoff-relevant.

An example: Small debt

- r = 0 and t = 0, 1, 2, ...
- The borrower earns \$ 1 million in each period.
 - He/she chooses to default if the PDV of repayments is greater than \$ 1 million;
 - maximum of PDV of repayments: $d_{max} = 1$ million.
- D = book value of debt in period 0.
- For $D \leq d_{max}$, there is no problem with repayments.
 - e.g., the lender can offer a repayment plan: $b_0 = D$ and $b_t = 0$, $t \ge 1$.
 - This is a credible repayment plan.
 - *D* is a payoff-relevant state variable.

An example: Large debt

- r = 0 and t = 0, 1, 2, ...
- The borrower earns \$ 1 million in each period.
 - He/she chooses to default if the PDV of repayments is greater than \$ 1 million;
 - maximum of PDV of repayments: $d_{max} = 1$ million.
- D = book value of debt in period 0.
- Suppose that D = 2 million (> d_{max}), and D cannot be adjusted.
 - The lender could offer a repayment plan: $b_0 = 1$ and $b_t = 0$, $t \ge 1$.
 - But it is not credible, because, in period 1, D₁ = 1, and the lender can demand the borrower to repay another 1 million.
 - Expecting it, the borrower will choose to default in period 0.
 - *D* is no longer a payoff-relevant state variable.

Literature

- Model of long-term debt contract
 - with state-contingent debt: Albuquerque and Hopenhayn (2004),
 - with non state-contingent debt: our model.
- Debt overhang
 - with new and old lenders: Myers (1971),
 - with only single lender: our model.

Introduction

2 Benchmark setting

3 NPL equilibrium

4 Concluding remarks

- time periods: $t = 0, 1, \ldots$
- productivity: $s \in \{s_L, s_H\}$, where $0 \le s_L < s_H$.
- a lender (bank) and a borrower (firm).
- two types of funds provided by the lender:
 - D_0 = initial amount of long-term loan;
 - $k_t =$ short-term loans (intra-period loans) in each period $t \ge 0$.
- $\beta = \text{common discount factor.}$
 - R = rate on short-term loans k_t .
 - $r = \beta^{-1} 1 =$ rate on long-term loans (inter-period loans).
- $F(s_t, k_t) =$ production (revenue) function of the firm.
- b_t = repayments on the long-term loans D_t in periods $t \ge 0$.

Value of the borrower

• x_t = dividends to the borrower (owner of the firm):

$$x_t = F(s_t, k_t) - Rk_t - b_t.$$

• Limited liability:

$$x_t \geq 0, \qquad \forall t \geq 0.$$

• $V_t = PDV$ of dividends (value of the borrower):

$$V_t = \mathbb{E}_t \sum_{i=t}^{\infty} \beta^{i-t} x_i = x_t + \beta \mathbb{E}_t V_{t+1}.$$

Limited commitment

- The firm can choose to default in any period t, after receiving working capital k_t .
- $G(s_t, k_t)$ = the value of the outside opportunity of the firm.
- The bank would receive none when the firm defaults.
- Enforcement constraint:

$$V_t \geq G(s_t, k_t), \qquad \forall t \geq 0.$$

Banks

• Banks are competitive in the sense that they take as given

- market rate for short-term lending: R,
- market rate for long-term lending: $r = \beta^{-1} 1$.
- Let d_t be the PDV of repayments of periods $t \ge 0$:

$$d_t = \mathbb{E}_t \sum_{i=t}^{\infty} \beta^{i-t} b_i \ge 0.$$

Contractual value of debt

- A contract specifies
 - the interest rate, $r = \beta^{-1} 1$,
 - the initial value of debt, D₀.
- In each period t, the repayments made prior to that period are verifiable.
- Let D_t be the contractual value (book value) of debt in period t:

$$D_t = \beta^{-1} (D_{t-1} - b_{t-1}).$$

- Then D_t is verifiable and can be used as a state variable.
- Note that it is a legal commitment that the bank cannot require repayment more than *D_t*:

$$b_t \leq D_t$$

Contractual rigidities

- Assume that debt restructuring is not feasible due to exogenous rigidities.
 - The bank cannot reduce the contractual value of debt from D_t to \hat{D}_t , where $\hat{D}_t < D_t = \beta^{-1}(D_{t-1} b_{t-1}).$
- The contractual rigidities may arise from, e.g.,
 - war of attrition due to bargaining frictions,
 - bank's preference not to trigger a bank run.

Bank's problem

• Bank maximizes PDV of repayments:

$$\begin{array}{l} \max \ d_{0} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} b_{t} \\ \text{s.t.} \ V_{t} = \mathbb{E}_{t} \sum_{i=t}^{\infty} \beta^{i-t} \big[F(s_{i},k_{i}) - Rk_{i} - b_{i} \big] \geq G(s_{t},k_{t}), \\ F(s_{t},k_{t}) - Rk_{t} - b_{t} \geq 0, \\ D_{t} = \beta^{-1} (D_{t-1} - b_{t-1}), \\ b_{t} \leq D_{t}. \end{array}$$

Recursive formulation

- Consider Markov equilibrium with the state variables (s_t, D_t) .
- Given expectations on borrower's value, $V^e(s, D)$, bank solves

$$d(s, D) = \max_{b,k,V} b + \beta \mathbb{E} d(s_{+1}, D_{+1})$$
(1)
s.t. $V = F(s, k) - Rk - b + \beta \mathbb{E} V^{e}(s_{+1}, D_{+1}),$
 $F(s, k) - Rk - b \ge 0,$
 $G(s, k) \le V,$
 $D_{+1} = \beta^{-1}(D - b),$
 $b \le D.$

Equilibrium condition is

$$V(s,D)=V^e(s,D).$$

Contractual value and real value of debt

- Contractual value of debt: D.
- Real value of debt: $d(s, D) (= \mathbb{E}_t \sum_{i=t}^{\infty} \beta^{i-t} b_i).$
 - In the deterministic case, $s_H = s_L$, with small debt D:

$$d(D)=D.$$

• In the stochastic case, $s_H > s_L$:

$$d(s, D) \leq D.$$

Characterization of equilibrium

• $k^*(s) =$ first-best level of production:

 $k^*(s) = \arg \max F(s,k) - Rk.$

• Threshold $D_{\max}(s)$:

$$D_{\max}(s) = \max_{D_{+1}(s,D) \leq D} D$$

• For $D > D_{\max}(s)$,

 $D_{+1}(s, D) > D.$

Markov equilibrium

• Markov equilibrium exists, though it may not be unique. See Appendix.

- Proof is given for a discretized version of the model.
- The equilibrium $\{k(s, D), b(s, D), d(s, D), V(s, D)\}$ satisfies that
 - for $D \leq D_{\max}$,
 - borrower repay debt as much as possible by setting dividend zero: F(s, k) - Rk - b = 0;
 - $\{k(s, D), V(s, D)\}$ are decreasing in D;
 - $\{D, k(s, D)\}$ can converge to first-best, $\{0, k^*(s)\}$, with positive probability;
 - D is a payoff-relevant state variable;
 - for $D > D_{\max}$,
 - {k(s, D), b(s, D), d(s, D), V(s, D)} = { $k_{npl}(s), b_{npl}(s), d_{npl}(s), V_{npl}(s)$ };
 - D can never be repaid in full;
 - D is no longer a payoff-relevant state variable.

Introduction

2 Benchmark setting

3 NPL equilibrium

4 Concluding remarks

When $D > D_{max}$

• Suppose that, in some period ("period t₀"),

 $D_{t_0} > D_{\max}(s),$

as a result of a continuation of low productivity.

• Then, for any feasible path $\{b_t, k_t, V_t, d_t\}$,

$$D_{t+1} > D_t, \quad \forall t \ge t_0.$$

NPL equilibrium

Proposition: For $D > D_{max}$, the solution to (1) does not depend on D, i.e., $\{k(s, D), b(s, D), d(s, D), V(s, D)\} = \{k(s), b(s), d(s), V(s)\}.$

- Let $\{k_t, b_t, d_t, V_t\}$ be $\{k(s_t, D_t), b(s_t, D_t), d(s_t, D_t), V(s_t, D_t)\}$ with $D_0 = D$,
- $\{k_t, b_t, d_t, V_t\}$ is the solution to the sequential problem (2) with $D_0 = D$.

$$d_{0} = \max_{k_{t}, b_{t}, V_{t}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} b_{t}$$
s.t.
$$V_{t} = \mathbb{E}_{t} \sum_{i=t}^{\infty} \beta^{i-t} [F(s_{i}, k_{i}) - Rk_{i} - b_{i}] \ge G(s_{t}, k_{t}),$$

$$F(s_{t}, k_{t}) - Rk_{t} - b_{t} \ge 0,$$

$$D_{t} = \beta^{-1} (D_{t-1} - b_{t-1}),$$

$$b_{t} \le D_{t}. \quad (\Leftarrow \text{ This constraint never binds.})$$

$$(2)$$

- $\{k_t, b_t, d_t, V_t\}$ is also the solution to (2) with any $D_0 = D' > D_{max}$.
- Thus, $\{k_t, b_t, d_t, V_t\}$ should be independent of D_0 .

Markov equilibrium with $D > D_{max}$

 As D is no longer a payoff-relevant state variable, the problem of the bank can be written as follows. Given the expectations, V^e(s),

$$d(s) = \max_{k,b} b + \beta \mathbb{E}d(s_{+1})$$

s.t. $G(s,k) \le F(s,k) - Rk - b + \beta \mathbb{E}V^{e}(s_{+1}),$

which reduces to

$$\max_{k} F(s,k) - Rk - G(s,k) + \beta \mathbb{E}(V^{e}(s_{+1}) + d(s_{+1})).$$

• The solution is given by

$$k_{npl}(s) \equiv \arg \max F(s,k) - Rk - G(s,k).$$

Markov equilibrium with $D > D_{max}$

• $k_{npl}(s) =$ worst level of production:

$$k_{npl}(s) = rg \max F(s,k) - Rk - G(s,k).$$

• Note:
$$k_{npl}(s) < k^*(s)$$
.

Lemma: The solution to (1) satisfies that $k(s, D) \ge k_{npl}(s)$, $\forall D \ge 0$.

Persistence of inefficiency

• Equilibrium dynamics:

 $k(s_t) = k_{npl}(s_t) \quad < k^*(s_t),$

$$V(s_t) = V_{npl}(s_t) \equiv G(k_{npl}(s_t)) \quad < V^*(s_t),$$

 $b(s_t) = b_{\mathsf{npl}}(s_t) \equiv F(s_t, k_{\mathsf{npl}}(s_t)) - Rk_{\mathsf{npl}}(s_t) - V_{\mathsf{npl}}(s_t) + \beta \mathbb{E}_t V_{\mathsf{npl}}(s_{t+1}),$

$$d(s_t) = d_{\mathsf{npl}}(s_t) \equiv b_{\mathsf{npl}}(s_t) + \mathbb{E}_t d_{\mathsf{npl}}(s_{t+1}) \quad < d_{\mathsf{max}}(s) = \max_{D} \ d(s, D).$$

Persistence of inefficiency

• Debt Laffer curve:

$$d(s_t) = d_{\mathsf{npl}}(s_t) \quad < d_{\mathsf{max}}(s) = \max_D \ d(s, D).$$

- d(s,D) is increasing in D for $D \leq \overline{D}(s) \equiv \arg \max_D d(s,D) \leq D_{\max}$.
- d(s, D) is decreasing in D for $D > \overline{D}(s)$.

Involuntary unemployment

in the general equilibrium with firms with $D > D_{max}$:

- supply is given: k = 1,
- if $F(s,1) R b_{npl}(s) + \beta \mathbb{E}G(s,1) < G(s,1)$ for any R > 0, then $k_{npl}(s) < 1$.
- there arises an excess supply of k: $1 k_{npl}(s)$.

Introduction

- 2 Benchmark setting
- 3 NPL equilibrium
- 4 Concluding remarks

Summary

- Suppose that $D_{t_0} > D_{\max}$.
- If debt restructuring is feasible,
 - the PDV of repayments, d(s, D), can be maximized by rewriting the contract and reducing the amount of debt to

$$ar{D}(s)\equiv rg\max_{D} d(s,D)\leq D_{\max}.$$

- Without debt restructuring,
 - contractual value of debt, D, is no longer a payoff-relevant state variable;
 - equilibrium path cannot be contingent on D;
 - in this case, inefficiency will continue forever.

Extensions

• Numerical experiments to compare the volatilities of macro variables:

Conjecture: Volatility is larger for $D > D_{max}$ than for $D \le D_{max}$.

- When D > D_{max}, the inter-temporal smoothing cannot be implemented as D cannot be used as a state variable;
- thus, an increase of debt from D to D', where $D < D_{max} < D'$, can be regarded as the source of uncertainty shock.
- Further extensions on contractual rigidities are
 - explicit cost of adjusting D_t .
 - bargaining.